哪种结构可以使学习者能够从未标记的数据中发现类?传统方法取决于功能空间的相似性和对数据的英勇假设。在本文中,我们在潜在标签换档(LLS)下介绍了无监督的学习,我们可以从多个域中访问未标记的数据,以便标签边缘$ p_d(y)$可以跨域变化,但是类有条件的$ p(\ mathbf) {x} | y)$不。这项工作实例化了识别类别的新原则:将分组分组的元素。对于有限输入空间,我们在LLS和主题建模之间建立了同构:输入对应于单词,域,文档和标签与主题。解决连续数据时,我们证明,当每个标签的支持包含一个可分离区域时,类似于锚词,Oracle访问$ P(d | \ Mathbf {x})$足以识别$ p_d(y)$和$ p_d( y | \ mathbf {x})$ for排列。因此,我们引入了一种实用算法,该算法利用域 - 歧义模型如下:(i)通过域歧视器$ p(d | \ mathbf {x})推动示例; (ii)通过$ p(d | \ mathbf {x})$ space中的聚类示例来离散数据; (iii)对离散数据执行非负矩阵分解; (iv)将回收的$ P(y | d)$与鉴别器输出$ p(d | \ mathbf {x})$结合在一起计算$ p_d(y | x)\; \ forall d $。通过半合成实验,我们表明我们的算法可以利用域信息来改善无监督的分类方法。当功能空间相似性并不表示真实分组时,我们揭示了标准无监督分类方法的故障模式,并从经验上证明我们的方法可以更好地处理这种情况。我们的结果建立了分销转移与主题建模之间的密切联系,为将来的工作开辟了有希望的界限。
translated by 谷歌翻译
This paper expounds the design and control of a new Variable Stiffness Series Elastic Actuator (VSSEA). It is established by employing a modular mechanical design approach that allows us to effectively optimise the stiffness modulation characteristics and power density of the actuator. The proposed VSSEA possesses the following features: i) no limitation in the work-range of output link, ii) a wide range of stiffness modulation (~20Nm/rad to ~1KNm/rad), iii) low-energy-cost stiffness modulation at equilibrium and non-equilibrium positions, iv) compact design and high torque density (~36Nm/kg), and v) high-speed stiffness modulation (~3000Nm/rad/s). Such features can help boost the safety and performance of many advanced robotic systems, e.g., a cobot that physically interacts with unstructured environments and an exoskeleton that provides physical assistance to human users. These features can also enable us to utilise variable stiffness property to attain various regulation and trajectory tracking control tasks only by employing conventional controllers, eliminating the need for synthesising complex motion control systems in compliant actuation. To this end, it is experimentally demonstrated that the proposed VSSEA is capable of precisely tracking desired position and force control references through the use of conventional Proportional-Integral-Derivative (PID) controllers.
translated by 谷歌翻译
Current image generation models struggle to reliably produce well-formed visual text. In this paper, we investigate a key contributing factor: popular text-to-image models lack character-level input features, making it much harder to predict a word's visual makeup as a series of glyphs. To quantify the extent of this effect, we conduct a series of controlled experiments comparing character-aware vs. character-blind text encoders. In the text-only domain, we find that character-aware models provide large gains on a novel spelling task (WikiSpell). Transferring these learnings onto the visual domain, we train a suite of image generation models, and show that character-aware variants outperform their character-blind counterparts across a range of novel text rendering tasks (our DrawText benchmark). Our models set a much higher state-of-the-art on visual spelling, with 30+ point accuracy gains over competitors on rare words, despite training on far fewer examples.
translated by 谷歌翻译
Recent work has reported that AI classifiers trained on audio recordings can accurately predict severe acute respiratory syndrome coronavirus 2 (SARSCoV2) infection status. Here, we undertake a large scale study of audio-based deep learning classifiers, as part of the UK governments pandemic response. We collect and analyse a dataset of audio recordings from 67,842 individuals with linked metadata, including reverse transcription polymerase chain reaction (PCR) test outcomes, of whom 23,514 tested positive for SARS CoV 2. Subjects were recruited via the UK governments National Health Service Test-and-Trace programme and the REal-time Assessment of Community Transmission (REACT) randomised surveillance survey. In an unadjusted analysis of our dataset AI classifiers predict SARS-CoV-2 infection status with high accuracy (Receiver Operating Characteristic Area Under the Curve (ROCAUC) 0.846 [0.838, 0.854]) consistent with the findings of previous studies. However, after matching on measured confounders, such as age, gender, and self reported symptoms, our classifiers performance is much weaker (ROC-AUC 0.619 [0.594, 0.644]). Upon quantifying the utility of audio based classifiers in practical settings, we find them to be outperformed by simple predictive scores based on user reported symptoms.
translated by 谷歌翻译
Since early in the coronavirus disease 2019 (COVID-19) pandemic, there has been interest in using artificial intelligence methods to predict COVID-19 infection status based on vocal audio signals, for example cough recordings. However, existing studies have limitations in terms of data collection and of the assessment of the performances of the proposed predictive models. This paper rigorously assesses state-of-the-art machine learning techniques used to predict COVID-19 infection status based on vocal audio signals, using a dataset collected by the UK Health Security Agency. This dataset includes acoustic recordings and extensive study participant meta-data. We provide guidelines on testing the performance of methods to classify COVID-19 infection status based on acoustic features and we discuss how these can be extended more generally to the development and assessment of predictive methods based on public health datasets.
translated by 谷歌翻译
The UK COVID-19 Vocal Audio Dataset is designed for the training and evaluation of machine learning models that classify SARS-CoV-2 infection status or associated respiratory symptoms using vocal audio. The UK Health Security Agency recruited voluntary participants through the national Test and Trace programme and the REACT-1 survey in England from March 2021 to March 2022, during dominant transmission of the Alpha and Delta SARS-CoV-2 variants and some Omicron variant sublineages. Audio recordings of volitional coughs, exhalations, and speech were collected in the 'Speak up to help beat coronavirus' digital survey alongside demographic, self-reported symptom and respiratory condition data, and linked to SARS-CoV-2 test results. The UK COVID-19 Vocal Audio Dataset represents the largest collection of SARS-CoV-2 PCR-referenced audio recordings to date. PCR results were linked to 70,794 of 72,999 participants and 24,155 of 25,776 positive cases. Respiratory symptoms were reported by 45.62% of participants. This dataset has additional potential uses for bioacoustics research, with 11.30% participants reporting asthma, and 27.20% with linked influenza PCR test results.
translated by 谷歌翻译
We study the use of model-based reinforcement learning methods, in particular, world models for continual reinforcement learning. In continual reinforcement learning, an agent is required to solve one task and then another sequentially while retaining performance and preventing forgetting on past tasks. World models offer a task-agnostic solution: they do not require knowledge of task changes. World models are a straight-forward baseline for continual reinforcement learning for three main reasons. Firstly, forgetting in the world model is prevented by persisting existing experience replay buffers across tasks, experience from previous tasks is replayed for learning the world model. Secondly, they are sample efficient. Thirdly and finally, they offer a task-agnostic exploration strategy through the uncertainty in the trajectories generated by the world model. We show that world models are a simple and effective continual reinforcement learning baseline. We study their effectiveness on Minigrid and Minihack continual reinforcement learning benchmarks and show that it outperforms state of the art task-agnostic continual reinforcement learning methods.
translated by 谷歌翻译
Large language models trained for code generation can be applied to speaking virtual worlds into existence (creating virtual worlds). In this work we show that prompt-based methods can both accelerate in-VR level editing, as well as can become part of gameplay rather than just part of game development. As an example, we present Codex VR Pong which shows non-deterministic game mechanics using generative processes to not only create static content but also non-trivial interactions between 3D objects. This demonstration naturally leads to an integral discussion on how one would evaluate and benchmark experiences created by generative models - as there are no qualitative or quantitative metrics that apply in these scenarios. We conclude by discussing impending challenges of AI-assisted co-creation in VR.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Clinical semantic parsing (SP) is an important step toward identifying the exact information need (as a machine-understandable logical form) from a natural language query aimed at retrieving information from electronic health records (EHRs). Current approaches to clinical SP are largely based on traditional machine learning and require hand-building a lexicon. The recent advancements in neural SP show a promise for building a robust and flexible semantic parser without much human effort. Thus, in this paper, we aim to systematically assess the performance of two such neural SP models for EHR question answering (QA). We found that the performance of these advanced neural models on two clinical SP datasets is promising given their ease of application and generalizability. Our error analysis surfaces the common types of errors made by these models and has the potential to inform future research into improving the performance of neural SP models for EHR QA.
translated by 谷歌翻译